Development of a combined catalyst and sorbent for the water gas shift reaction
نویسندگان
چکیده
A combined catalyst and sorbent was developed for reacting CO with steam to produce H2 in a single reaction stage at 600 °C by employing the water gas shift (WGS) reaction. The combined material was in the form of spherical pellets where each pellet consisted of a CaO core for absorbing byproduct CO2 surrounded by a porous shell of Al2O3 which supported a Ni catalyst. The best results were achieved by incorporating 5 wt % limestone in the shell material to suppress coking. By employing the best core-in-shell pellets and supplying a 3:1 mol ratio of steam to CO at 600 °C, more than 97% of the CO was converted to H2 by the WGS reaction and less than 1% was converted to CH4 by a side reaction. Also, none of the CO was converted to coke. ■ INTRODUCTION The water gas shift (WGS) reaction shown below is frequently employed for the production of hydrogen (H2) by reacting steam (H2O) with carbon monoxide (CO) that is produced either by reforming hydrocarbons or by gasifying coal or biomass. + ↔ + Δ = − ° H CO(g) H O(g) H (g) CO (g) 41 kJ/mol 2 2 2 25 C
منابع مشابه
Application of Combined Catalyst/Sorbent on Hydrogen Generation from Biomass Gasification
Air-blown gasification of biomass in fluidized bed reactors produces relatively low concentrations of hydrogen. The combination of a catalyst and calcium-based sorbent is being developed to increase the efficiency of converting producer gas from biomass gasification into hydrogen. The conversion process entails reforming the methane and tar, and converting carbon monoxide into hydrogen by the w...
متن کاملEffect of MgAl2O4 catalyst support synthesis method on the catalytic activity of nickel Nano catalyst in reverse water gas shift reaction
In this research effect of synthesis method of magnesium aluminate as support of Ni catalysts at the reverse water gas shift (RWGS) reaction was evaluated. The RWGS reaction is applied in Carbon Dioxide Hydrogenation to Form Methanol via a Reverse Water-Gas Shift Reaction (CAMERE) process for the transformation of CO2 into methanol. The MgAl2O4 supports were prepared by sol-gel (M1), surfactant...
متن کاملKinetic Modeling of the High Temperature Water Gas Shift Reaction on a Novel Fe-Cr Nanocatalyst by Using Various Kinetic Mechanisms
In this work the kinetic data demanded for kinetic modeling were obtained in temperatures 350, 400, 450 and 500 oC by conducting experimentations on a Fe-Cr nanocatalyst prepared from a novel method and a commercial Fe-Cr-Cu one. The collected data were subjected to kinetic modeling by using two models derived from redox and associative mechanisms as well as an empirical one. The coefficients o...
متن کاملCatalyst and sorbent material for the production of hydrogen
A catalyst and sorbent is disclosed which comprises pellets with an absorbent core and a protective shell with a catalyst in the shell. Such material is especially well suited for steam reforming of hydrocarbons to produce hydrogen since a reforming catalyst can be incorporated in the shell and a sorbent for the by-product carbon dioxide can be used for the core. It is also well suited for prod...
متن کاملProduction of fuel - cell grade hydrogen by sorption enhanced water gas shift reaction using Pd / Ni - Co catalyst
It has been demonstrated both thermodynamically and experimentally that fuel-cell grade hydrogen can be produced by a one-step sorption enhanced water gas shift (SEWGS) process at about 500 oC, where the water gas shift (WGS) catalyst and the CO2 sorbent are highly integrated. A synthetic CaO-based mixed oxide sorbent was also assessed, which showed a good CO2 capture capacity and stability in ...
متن کامل